
Questions & Answers PDF Page 1

PrepBolt.com

Linux Foundation
CKS Exam

Certified Kubernetes Security Specialist

Thank you for Downloading CKS exam PDF Demo

You can also try our CKS practice exam software

Download Free Demo

https://prepbolt.com/CKS.html

https://prepbolt.com

Questions & Answers PDF Page 2

PrepBolt.com

Version: 6.0

Question: 1

Create a new ServiceAccount named backend-sa in the existing namespace default, which has the
capability to list the pods inside the namespace default.
Create a new Pod named backend-pod in the namespace default, mount the newly created sa
backend-sa to the pod, and Verify that the pod is able to list pods.
Ensure that the Pod is running.

Answer: See the
Explanation below:

Explanation:

A service account provides an identity for processes that run in a Pod.

When you (a human) access the cluster (for example, using kubectl), you are authenticated by the
apiserver as a particular User Account (currently this is usually admin, unless your cluster
administrator has customized your cluster). Processes in containers inside pods can also contact the
apiserver. When they do, they are authenticated as a particular Service Account (for
example, default).

When you create a pod, if you do not specify a service account, it is automatically assigned
the default service account in the same namespace. If you get the raw json or yaml for a pod you
have created (for example, kubectl get pods/<podname> -o yaml), you can see
the spec.serviceAccountName field has been automatically set.
You can access the API from inside a pod using automatically mounted service account credentials, as
described in Accessing the Cluster. The API permissions of the service account depend on
the authorization plugin and policy in use.
In version 1.6+, you can opt out of automounting API credentials for a service account by
setting automountServiceAccountToken: false on the service account:
apiVersion: v1
kind: ServiceAccount
metadata:
name: build-robot
automountServiceAccountToken: false
...
In version 1.6+, you can also opt out of automounting API credentials for a particular pod:
apiVersion: v1
kind: Pod
metadata:
name: my-pod
spec:

https://prepbolt.com
https://kubernetes.io/docs/concepts/overview/working-with-objects/object-management/
https://kubernetes.io/docs/concepts/overview/working-with-objects/object-management/
https://kubernetes.io/docs/concepts/overview/working-with-objects/object-management/
https://kubernetes.io/docs/tasks/access-application-cluster/access-cluster
https://kubernetes.io/docs/tasks/access-application-cluster/access-cluster
https://kubernetes.io/docs/tasks/access-application-cluster/access-cluster
https://kubernetes.io/docs/tasks/access-application-cluster/access-cluster
https://kubernetes.io/docs/tasks/access-application-cluster/access-cluster
https://kubernetes.io/docs/reference/access-authn-authz/authorization/#authorization-modules
https://kubernetes.io/docs/reference/access-authn-authz/authorization/#authorization-modules
https://kubernetes.io/docs/reference/access-authn-authz/authorization/#authorization-modules
https://kubernetes.io/docs/reference/access-authn-authz/authorization/#authorization-modules
https://kubernetes.io/docs/reference/access-authn-authz/authorization/#authorization-modules
https://kubernetes.io/docs/reference/access-authn-authz/authorization/#authorization-modules
https://kubernetes.io/docs/reference/access-authn-authz/authorization/#authorization-modules

Questions & Answers PDF Page 3

PrepBolt.com

serviceAccountName: build-robot
automountServiceAccountToken: false
...
The pod spec takes precedence over the service account if both specify
a automountServiceAccountToken value.

Question: 2
 Fix all issues via configuration and restart the affected components to ensure the new setting takes
effect.
 Fix all of the following violations that were found against the API server:-

a. Ensure the --authorization-mode argument includes RBAC
 b. Ensure the --authorization-mode argument includes Node
 c. Ensure that the --profiling argument is set to false
Fix all of the following violations that were found against the Kubelet:-

 a. Ensure the --anonymous-auth argument is set to false.
 b. Ensure that the --authorization-mode argument is set to Webhook.
Fix all of the following violations that were found against the ETCD:-
 a. Ensure that the --auto-tls argument is not set to true

 Hint: Take the use of Tool Kube-Bench

Answer: See the
Explanation below.

Explanation:
API server:
Ensure the --authorization-mode argument includes RBAC
Turn on Role Based Access Control.
Role Based Access Control (RBAC) allows fine-grained control over the operations that different
entities can perform on different objects in the cluster. It is recommended to use the RBAC
authorization mode.
Fix - Buildtime
Kubernetes
apiVersion: v1
kind: Pod
metadata:
creationTimestamp: null
labels:
component: kube-apiserver
tier: control-plane
name: kube-apiserver
namespace: kube-system
spec:

https://prepbolt.com

Questions & Answers PDF Page 4

PrepBolt.com

containers:
- command:
+ - kube-apiserver
+ - --authorization-mode=RBAC,Node
image: gcr.io/google_containers/kube-apiserver-amd64:v1.6.0
livenessProbe:
failureThreshold: 8
httpGet:
host: 127.0.0.1
path: /healthz
port: 6443
scheme: HTTPS
initialDelaySeconds: 15
timeoutSeconds: 15
name: kube-apiserver-should-pass
resources:
requests:
cpu: 250m

volumeMounts:
- mountPath: /etc/kubernetes/
name: k8s
readOnly: true
- mountPath: /etc/ssl/certs
name: certs
- mountPath: /etc/pki
name: pki

hostNetwork: true
volumes:
- hostPath:
path: /etc/kubernetes
name: k8s
- hostPath:
path: /etc/ssl/certs
name: certs
- hostPath:
path: /etc/pki
name: pki

Ensure the --authorization-mode argument includes Node

Remediation: Edit the API server pod specification file /etc/kubernetes/manifests/kube-
apiserver.yaml on the master node and set the --authorization-mode parameter to a value that
includes Node.
--authorization-mode=Node,RBAC
Audit:
/bin/ps -ef | grep kube-apiserver | grep -v grep
Expected result:
'Node,RBAC' has 'Node'

https://prepbolt.com

Questions & Answers PDF Page 5

PrepBolt.com

Ensure that the --profiling argument is set to false

Remediation: Edit the API server pod specification file /etc/kubernetes/manifests/kube-
apiserver.yaml on the master node and set the below parameter.
--profiling=false
Audit:
/bin/ps -ef | grep kube-apiserver | grep -v grep
Expected result:
'false' is equal to 'false'
Fix all of the following violations that were found against the Kubelet:-
Ensure the --anonymous-auth argument is set to false.
Remediation: If using a Kubelet config file, edit the file to set authentication: anonymous: enabled
to false. If using executable arguments, edit the kubelet service
file /etc/systemd/system/kubelet.service.d/10-kubeadm.conf on each worker node and set the
below parameter in KUBELET_SYSTEM_PODS_ARGS variable.
--anonymous-auth=false
Based on your system, restart the kubelet service. For example:
systemctl daemon-reload
systemctl restart kubelet.service
Audit:
/bin/ps -fC kubelet
Audit Config:
/bin/cat /var/lib/kubelet/config.yaml
Expected result:
'false' is equal to 'false'

2) Ensure that the --authorization-mode argument is set to Webhook.

Audit
docker inspect kubelet | jq -e '.[0].Args[] | match("--authorization-mode=Webhook").string'
Returned Value: --authorization-mode=Webhook

Fix all of the following violations that were found against the ETCD:-
 a. Ensure that the --auto-tls argument is not set to true
Do not use self-signed certificates for TLS. etcd is a highly-available key value store used by
Kubernetes deployments for persistent storage of all of its REST API objects. These objects are
sensitive in nature and should not be available to unauthenticated clients. You should enable the
client authentication via valid certificates to secure the access to the etcd service.
Fix - Buildtime
Kubernetes
apiVersion: v1
kind: Pod
metadata:
annotations:
scheduler.alpha.kubernetes.io/critical-pod: ""
creationTimestamp: null
labels:

https://prepbolt.com

Questions & Answers PDF Page 6

PrepBolt.com

component: etcd
tier: control-plane
name: etcd
namespace: kube-system
spec:
containers:
- command:
+ - etcd
+ - --auto-tls=true
image: k8s.gcr.io/etcd-amd64:3.2.18
imagePullPolicy: IfNotPresent
livenessProbe:
exec:
command:
- /bin/sh
- -ec
- ETCDCTL_API=3 etcdctl --endpoints=https://[192.168.22.9]:2379 --

cacert=/etc/kubernetes/pki/etcd/ca.crt
--cert=/etc/kubernetes/pki/etcd/healthcheck-client.crt --

key=/etc/kubernetes/pki/etcd/healthcheck-client.key
get foo

failureThreshold: 8
initialDelaySeconds: 15
timeoutSeconds: 15
name: etcd-should-fail
resources: {}
volumeMounts:
- mountPath: /var/lib/etcd
name: etcd-data
- mountPath: /etc/kubernetes/pki/etcd
name: etcd-certs

hostNetwork: true
priorityClassName: system-cluster-critical
volumes:
- hostPath:
path: /var/lib/etcd
type: DirectoryOrCreate
name: etcd-data
- hostPath:
path: /etc/kubernetes/pki/etcd
type: DirectoryOrCreate
name: etcd-certs

status: {}

Explanation:

https://prepbolt.com

Questions & Answers PDF Page 7

PrepBolt.com

https://prepbolt.com

Questions & Answers PDF Page 8

PrepBolt.com

https://prepbolt.com

Questions & Answers PDF Page 9

PrepBolt.com

Question: 3

Create a PSP that will prevent the creation of privileged pods in the namespace.
Create a new PodSecurityPolicy named prevent-privileged-policy which prevents the creation of
privileged pods.
Create a new ServiceAccount named psp-sa in the namespace default.
Create a new ClusterRole named prevent-role, which uses the newly created Pod Security Policy
prevent-privileged-policy.
Create a new ClusterRoleBinding named prevent-role-binding, which binds the created ClusterRole
prevent-role to the created SA psp-sa.
Also, Check the Configuration is working or not by trying to Create a Privileged pod, it should get
failed.

Answer: See the
Explanation below.

Explanation:
Create a PSP that will prevent the creation of privileged pods in the namespace.

$ cat clusterrole-use-privileged.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole

https://prepbolt.com

Questions & Answers PDF Page 10

PrepBolt.com

metadata:
name: use-privileged-psp
rules:
- apiGroups: ['policy']
resources: ['podsecuritypolicies']
verbs: ['use']
resourceNames:
- default-psp

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: privileged-role-bind
namespace: psp-test
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: use-privileged-psp
subjects:
- kind: ServiceAccount
name: privileged-sa

$ kubectl -n psp-test apply -f clusterrole-use-privileged.yaml
After a few moments, the privileged Pod should be created.

Create a new PodSecurityPolicy named prevent-privileged-policy which prevents the creation of
privileged pods.

apiVersion: policy/v1beta1
kind: PodSecurityPolicy
metadata:
name: example
spec:
privileged: false # Don't allow privileged pods!
The rest fills in some required fields.
seLinux:
rule: RunAsAny
supplementalGroups:
rule: RunAsAny
runAsUser:
rule: RunAsAny
fsGroup:
rule: RunAsAny
volumes:
- '*'

And create it with kubectl:
kubectl-admin create -f example-psp.yaml
Now, as the unprivileged user, try to create a simple pod:

https://prepbolt.com

Questions & Answers PDF Page 11

PrepBolt.com

kubectl-user create -f- <<EOF
apiVersion: v1
kind: Pod
metadata:
name: pause
spec:
containers:
- name: pause
image: k8s.gcr.io/pause

EOF
The output is similar to this:
Error from server (Forbidden): error when creating "STDIN": pods "pause" is forbidden: unable to
validate against any pod security policy: []

Create a new ServiceAccount named psp-sa in the namespace default.

$ cat clusterrole-use-privileged.yaml

apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
name: use-privileged-psp
rules:
- apiGroups: ['policy']
resources: ['podsecuritypolicies']
verbs: ['use']
resourceNames:
- default-psp

apiVersion: rbac.authorization.k8s.io/v1
kind: RoleBinding
metadata:
name: privileged-role-bind
namespace: psp-test
roleRef:
apiGroup: rbac.authorization.k8s.io
kind: ClusterRole
name: use-privileged-psp
subjects:
- kind: ServiceAccount
name: privileged-sa

$ kubectl -n psp-test apply -f clusterrole-use-privileged.yaml
After a few moments, the privileged Pod should be created.

Create a new ClusterRole named prevent-role, which uses the newly created Pod Security Policy
prevent-privileged-policy.

apiVersion: policy/v1beta1

https://prepbolt.com

Questions & Answers PDF Page 12

PrepBolt.com

kind: PodSecurityPolicy
metadata:
name: example
spec:
privileged: false # Don't allow privileged pods!
The rest fills in some required fields.
seLinux:
rule: RunAsAny
supplementalGroups:
rule: RunAsAny
runAsUser:
rule: RunAsAny
fsGroup:
rule: RunAsAny
volumes:
- '*'
And create it with kubectl:
kubectl-admin create -f example-psp.yaml
Now, as the unprivileged user, try to create a simple pod:
kubectl-user create -f- <<EOF
apiVersion: v1
kind: Pod
metadata:
name: pause
spec:
containers:
- name: pause
image: k8s.gcr.io/pause

EOF
The output is similar to this:
Error from server (Forbidden): error when creating "STDIN": pods "pause" is forbidden: unable to
validate against any pod security policy: []

Create a new ClusterRoleBinding named prevent-role-binding, which binds the created ClusterRole
prevent-role to the created SA psp-sa.

apiVersion: rbac.authorization.k8s.io/v1
This role binding allows "jane" to read pods in the "default" namespace.
You need to already have a Role named "pod-reader" in that namespace.
kind: RoleBinding
metadata:
name: read-pods
namespace: default
subjects:
You can specify more than one "subject"
- kind: User
name: jane # "name" is case sensitive
apiGroup: rbac.authorization.k8s.io

https://prepbolt.com

Questions & Answers PDF Page 13

PrepBolt.com

roleRef:
"roleRef" specifies the binding to a Role / ClusterRole
kind: Role #this must be Role or ClusterRole
name: pod-reader # this must match the name of the Role or ClusterRole you wish to bind to
apiGroup: rbac.authorization.k8s.io

apiVersion: rbac.authorization.k8s.io/v1
kind: Role
metadata:
namespace: default
name: pod-reader
rules:
- apiGroups: [""] # "" indicates the core API group
resources: ["pods"]
verbs: ["get", "watch", "list"]

Question: 4

https://prepbolt.com

Questions & Answers PDF Page 14

PrepBolt.com

Context

A Role bound to a Pod's ServiceAccount grants overly permissive permissions. Complete the
following tasks to reduce the set of permissions.

Task

Given an existing Pod named web-pod running in the namespace security.

https://prepbolt.com

Questions & Answers PDF Page 15

PrepBolt.com

Edit the existing Role bound to the Pod's ServiceAccount sa-dev-1 to only allow performing watch
operations, only on resources of type services.

Create a new Role named role-2 in the namespace security, which only allows performing update
operations, only on resources of type namespaces.

Create a new RoleBinding named role-2-binding binding the newly created Role to the Pod's
ServiceAccount.

Answer: See
explanation below.

Explanation:

https://prepbolt.com

Questions & Answers PDF Page 16

PrepBolt.com

Question: 5

Enable audit logs in the cluster, To Do so, enable the log backend, and ensure that
1. logs are stored at /var/log/kubernetes-logs.txt.
2. Log files are retained for 12 days.
3. at maximum, a number of 8 old audit logs files are retained.
4. set the maximum size before getting rotated to 200MB
Edit and extend the basic policy to log:
1. namespaces changes at RequestResponse
2. Log the request body of secrets changes in the namespace kube-system.
3. Log all other resources in core and extensions at the Request level.
4. Log "pods/portforward", "services/proxy" at Metadata level.
5. Omit the Stage RequestReceived

https://prepbolt.com

Questions & Answers PDF Page 17

PrepBolt.com

All other requests at the Metadata level

Answer: See the
explanation below:

Explanation:
Kubernetes auditing provides a security-relevant chronological set of records about a cluster. Kube-
apiserver performs auditing. Each request on each stage of its execution generates an event, which is
then pre-processed according to a certain policy and written to a backend. The policy determines
what’s recorded and the backends persist the records.
You might want to configure the audit log as part of compliance with the CIS (Center for Internet
Security) Kubernetes Benchmark controls.

The audit log can be enabled by default using the following configuration in cluster.yml:
services:
kube-api:
audit_log:
enabled: true

When the audit log is enabled, you should be able to see the default values at /etc/kubernetes/audit-
policy.yaml

The log backend writes audit events to a file in JSONlines format. You can configure the log audit
backend using the following kube-apiserver flags:
--audit-log-path specifies the log file path that log backend uses to write audit events. Not specifying
this flag disables log backend. - means standard out
--audit-log-maxage defined the maximum number of days to retain old audit log files
--audit-log-maxbackup defines the maximum number of audit log files to retain
--audit-log-maxsize defines the maximum size in megabytes of the audit log file before it gets rotated
If your cluster's control plane runs the kube-apiserver as a Pod, remember to mount the hostPath to
the location of the policy file and log file, so that audit records are persisted. For example:
--audit-policy-file=/etc/kubernetes/audit-policy.yaml \
--audit-log-path=/var/log/audit.log

https://prepbolt.com
https://jsonlines.org/

Questions & Answers PDF Page 18

PrepBolt.com

Thank You for trying CKS PDF Demo

To try our CKS practice exam software visit link below

https://prepbolt.com/CKS.html

Start Your CKS Preparation
Use Coupon “SAVE50” for extra 50% discount on the purchase of
Practice Test Software. Test your CKS preparation with actual exam

questions.

https://prepbolt.com

